Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Validation and Inference of Agent Based Models (2107.03619v1)

Published 8 Jul 2021 in cs.AI and stat.AP

Abstract: Agent Based Modelling (ABM) is a computational framework for simulating the behaviours and interactions of autonomous agents. As Agent Based Models are usually representative of complex systems, obtaining a likelihood function of the model parameters is nearly always intractable. There is a necessity to conduct inference in a likelihood free context in order to understand the model output. Approximate Bayesian Computation is a suitable approach for this inference. It can be applied to an Agent Based Model to both validate the simulation and infer a set of parameters to describe the model. Recent research in ABC has yielded increasingly efficient algorithms for calculating the approximate likelihood. These are investigated and compared using a pedestrian model in the Hamilton CBD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. D. Townsend (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.