Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast $ε$-free Inference of Simulation Models with Bayesian Conditional Density Estimation (1605.06376v4)

Published 20 May 2016 in stat.ML, cs.LG, and stat.CO

Abstract: Many statistical models can be simulated forwards but have intractable likelihoods. Approximate Bayesian Computation (ABC) methods are used to infer properties of these models from data. Traditionally these methods approximate the posterior over parameters by conditioning on data being inside an $\epsilon$-ball around the observed data, which is only correct in the limit $\epsilon!\rightarrow!0$. Monte Carlo methods can then draw samples from the approximate posterior to approximate predictions or error bars on parameters. These algorithms critically slow down as $\epsilon!\rightarrow!0$, and in practice draw samples from a broader distribution than the posterior. We propose a new approach to likelihood-free inference based on Bayesian conditional density estimation. Preliminary inferences based on limited simulation data are used to guide later simulations. In some cases, learning an accurate parametric representation of the entire true posterior distribution requires fewer model simulations than Monte Carlo ABC methods need to produce a single sample from an approximate posterior.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. George Papamakarios (21 papers)
  2. Iain Murray (37 papers)
Citations (157)