Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Angles of Arc-Polygons and Lombardi Drawings of Cacti (2107.03615v1)

Published 8 Jul 2021 in cs.CG

Abstract: We characterize the triples of interior angles that are possible in non-self-crossing triangles with circular-arc sides, and we prove that a given cyclic sequence of angles can be realized by a non-self-crossing polygon with circular-arc sides whenever all angles are at most pi. As a consequence of these results, we prove that every cactus has a planar Lombardi drawing (a drawing with edges depicted as circular arcs, meeting at equal angles at each vertex) for its natural embedding in which every cycle of the cactus is a face of the drawing. However, there exist planar embeddings of cacti that do not have planar Lombardi drawings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.