Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Extensions of ADMM for Separable Convex Optimization Problems with Linear Equality or Inequality Constraints (2107.01897v2)

Published 5 Jul 2021 in math.OC

Abstract: The alternating direction method of multipliers (ADMM) proposed by Glowinski and Marrocco is a benchmark algorithm for two-block separable convex optimization problems with linear equality constraints. It has been modified, specified, and generalized from various perspectives to tackle more concrete or complicated application problems. Despite its versatility and phenomenal popularity, it remains unknown whether or not the ADMM can be extended to separable convex optimization problems with linear inequality constraints. In this paper, we lay down the foundation of how to extend the ADMM to two-block and multiple-block (more than two blocks) separable convex optimization problems with linear inequality constraints. From a high-level and methodological perspective, we propose a unified framework of algorithmic design and a roadmap for convergence analysis in the context of variational inequalities, based on which it is possible to design a series of concrete ADMM-based algorithms with provable convergence in the prediction-correction structure. The proposed algorithmic framework and roadmap for convergence analysis are eligible to various convex optimization problems with different degrees of separability, in which both linear equality and linear inequality constraints can be included. The analysis is comprehensive yet can be presented by elementary mathematics, and hence generically understandable.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.