Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Transformer-F: A Transformer network with effective methods for learning universal sentence representation (2107.00653v1)

Published 2 Jul 2021 in cs.CL and cs.LG

Abstract: The Transformer model is widely used in natural language processing for sentence representation. However, the previous Transformer-based models focus on function words that have limited meaning in most cases and could merely extract high-level semantic abstraction features. In this paper, two approaches are introduced to improve the performance of Transformers. We calculated the attention score by multiplying the part-of-speech weight vector with the correlation coefficient, which helps extract the words with more practical meaning. The weight vector is obtained by the input text sequence based on the importance of the part-of-speech. Furthermore, we fuse the features of each layer to make the sentence representation results more comprehensive and accurate. In experiments, we demonstrate the effectiveness of our model Transformer-F on three standard text classification datasets. Experimental results show that our proposed model significantly boosts the performance of text classification as compared to the baseline model. Specifically, we obtain a 5.28% relative improvement over the vanilla Transformer on the simple tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)