Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised learning with Bayesian Confidence Propagation Neural Network (2106.15546v1)

Published 29 Jun 2021 in cs.LG and cs.NE

Abstract: Learning internal representations from data using no or few labels is useful for machine learning research, as it allows using massive amounts of unlabeled data. In this work, we use the Bayesian Confidence Propagation Neural Network (BCPNN) model developed as a biologically plausible model of the cortex. Recent work has demonstrated that these networks can learn useful internal representations from data using local Bayesian-Hebbian learning rules. In this work, we show how such representations can be leveraged in a semi-supervised setting by introducing and comparing different classifiers. We also evaluate and compare such networks with other popular semi-supervised classifiers.

Citations (2)

Summary

We haven't generated a summary for this paper yet.