Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning representations in Bayesian Confidence Propagation neural networks (2003.12415v1)

Published 27 Mar 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Unsupervised learning of hierarchical representations has been one of the most vibrant research directions in deep learning during recent years. In this work we study biologically inspired unsupervised strategies in neural networks based on local Hebbian learning. We propose new mechanisms to extend the Bayesian Confidence Propagating Neural Network (BCPNN) architecture, and demonstrate their capability for unsupervised learning of salient hidden representations when tested on the MNIST dataset.

Citations (14)

Summary

We haven't generated a summary for this paper yet.