Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Mean-field behavior of nearest-neighbor oriented percolation on the BCC lattice above $8+1$ dimensions (2106.14211v4)

Published 27 Jun 2021 in math-ph, cond-mat.stat-mech, math.MP, and math.PR

Abstract: In this paper, we consider nearest-neighbor oriented percolation with independent Bernoulli bond-occupation probability on the $d$-dimensional body-centered cubic (BCC) lattice $\mathbb{L}d$ and the set of non-negative integers $\mathbb{Z}+$. Thanks to the orderly structure of the BCC lattice, we prove that the infrared bound holds on $\mathbb{L}d\times\mathbb{Z}+$ in all dimensions $d\geq 9$. As opposed to ordinary percolation, we have to deal with complex numbers due to asymmetry induced by time-orientation, which makes it hard to bound the bootstrap functions in the lace-expansion analysis. By investigating the Fourier-Laplace transform of the random-walk Green function and the two-point function, we derive the key properties to obtain the upper bounds and resolve a problematic issue in Nguyen and Yang's bound. The issue is caused by the fact that the Fourier transform of the random-walk transition probability can take the value $-1$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.