Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces (2106.14176v1)

Published 27 Jun 2021 in cs.CG and cs.DS

Abstract: In this paper, we present a linear-time approximation scheme for $k$-means clustering of \emph{incomplete} data points in $d$-dimensional Euclidean space. An \emph{incomplete} data point with $\Delta>0$ unspecified entries is represented as an axis-parallel affine subspaces of dimension $\Delta$. The distance between two incomplete data points is defined as the Euclidean distance between two closest points in the axis-parallel affine subspaces corresponding to the data points. We present an algorithm for $k$-means clustering of axis-parallel affine subspaces of dimension $\Delta$ that yields an $(1+\epsilon)$-approximate solution in $O(nd)$ time. The constants hidden behind $O(\cdot)$ depend only on $\Delta, \epsilon$ and $k$. This improves the $O(n2 d)$-time algorithm by Eiben et al.[SODA'21] by a factor of $n$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.