Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry Meets Vectors: Approximation Algorithms for Multidimensional Packing (2106.13951v1)

Published 26 Jun 2021 in cs.DS

Abstract: We study the generalized multidimensional bin packing problem (GVBP) that generalizes both geometric packing and vector packing. Here, we are given $n$ rectangular items where the $i{\textrm{th}}$ item has width $w(i)$, height $h(i)$, and $d$ nonnegative weights $v_1(i), v_2(i), \ldots, v_{d}(i)$. Our goal is to get an axis-parallel non-overlapping packing of the items into square bins so that for all $j \in [d]$, the sum of the $j{\textrm{th}}$ weight of items in each bin is at most 1. This is a natural problem arising in logistics, resource allocation, and scheduling. Despite being well studied in practice, surprisingly, approximation algorithms for this problem have rarely been explored. We first obtain two simple algorithms for GVBP having asymptotic approximation ratios $6(d+1)$ and $3(1 + \ln(d+1) + \varepsilon)$. We then extend the Round-and-Approx (R&A) framework [Bansal-Khan, SODA'14] to wider classes of algorithms, and show how it can be adapted to GVBP. Using more sophisticated techniques, we obtain better approximation algorithms for GVBP, and we get further improvement by combining them with the R&A framework. This gives us an asymptotic approximation ratio of $2(1+\ln((d+4)/2))+\varepsilon$ for GVBP, which improves to $2.919+\varepsilon$ for the special case of $d=1$. We obtain further improvement when the items are allowed to be rotated. We also present algorithms for a generalization of GVBP where the items are high dimensional cuboids.

Citations (4)

Summary

We haven't generated a summary for this paper yet.