Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Parsing Natural Language into Relational Algebra (2106.13858v1)

Published 25 Jun 2021 in cs.CL

Abstract: Natural interface to database (NLIDB) has been researched a lot during the past decades. In the core of NLIDB, is a semantic parser used to convert natural language into SQL. Solutions from traditional NLP methodology focuses on grammar rule pattern learning and pairing via intermediate logic forms. Although those methods give an acceptable performance on certain specific database and parsing tasks, they are hard to generalize and scale. On the other hand, recent progress in neural deep learning seems to provide a promising direction towards building a general NLIDB system. Unlike the traditional approach, those neural methodologies treat the parsing problem as a sequence-to-sequence learning problem. In this paper, we experimented on several sequence-to-sequence learning models and evaluate their performance on general database parsing task.

Summary

We haven't generated a summary for this paper yet.