Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging the Semantic Gap with SQL Query Logs in Natural Language Interfaces to Databases (1902.00031v1)

Published 31 Jan 2019 in cs.DB

Abstract: A critical challenge in constructing a natural language interface to database (NLIDB) is bridging the semantic gap between a natural language query (NLQ) and the underlying data. Two specific ways this challenge exhibits itself is through keyword mapping and join path inference. Keyword mapping is the task of mapping individual keywords in the original NLQ to database elements (such as relations, attributes or values). It is challenging due to the ambiguity in mapping the user's mental model and diction to the schema definition and contents of the underlying database. Join path inference is the process of selecting the relations and join conditions in the FROM clause of the final SQL query, and is difficult because NLIDB users lack the knowledge of the database schema or SQL and therefore cannot explicitly specify the intermediate tables and joins needed to construct a final SQL query. In this paper, we propose leveraging information from the SQL query log of a database to enhance the performance of existing NLIDBs with respect to these challenges. We present a system Templar that can be used to augment existing NLIDBs. Our extensive experimental evaluation demonstrates the effectiveness of our approach, leading up to 138% improvement in top-1 accuracy in existing NLIDBs by leveraging SQL query log information.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Christopher Baik (3 papers)
  2. H. V. Jagadish (41 papers)
  3. Yunyao Li (43 papers)
Citations (60)

Summary

We haven't generated a summary for this paper yet.