Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

A flexible Bayesian framework for individualized inference via adaptive borrowing (2106.13431v2)

Published 25 Jun 2021 in stat.ME

Abstract: The explosion in high-resolution data capture technologies in health has increased interest in making inferences about individual-level parameters. While technology may provide substantial data on a single individual, how best to use multisource population data to improve individualized inference remains an open research question. One possible approach, the multisource exchangeability model (MEM), is a Bayesian method for integrating data from supplementary sources into the analysis of a primary source. MEM was originally developed to improve inference for a single study by asymmetrically borrowing information from a set of similar previous studies and was further developed to apply a more computationally intensive symmetric borrowing in the context of basket trial; however, even for asymmetric borrowing, its computational burden grows exponentially with the number of supplementary sources, making it unsuitable for applications where hundreds or thousands of supplementary sources (i.e., individuals) could contribute to inference on a given individual. In this paper, we propose the data-driven MEM (dMEM), a two-stage approach that includes both source selection and clustering to enable the inclusion of an arbitrary number of sources to contribute to individualized inference in a computationally tractable and data-efficient way. We illustrate the application of dMEM to individual-level human behavior and mental well-being data collected via smartphones, where our approach increases individual-level estimation precision by 84% compared with a standard no-borrowing method and outperforms recently-proposed competing methods in 80% of individuals.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)