Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Faster Randomized Methods for Orthogonality Constrained Problems (2106.12060v2)

Published 22 Jun 2021 in math.NA, cs.LG, cs.NA, math.OC, and stat.ML

Abstract: Recent literature has advocated the use of randomized methods for accelerating the solution of various matrix problems arising throughout data science and computational science. One popular strategy for leveraging randomization is to use it as a way to reduce problem size. However, methods based on this strategy lack sufficient accuracy for some applications. Randomized preconditioning is another approach for leveraging randomization, which provides higher accuracy. The main challenge in using randomized preconditioning is the need for an underlying iterative method, thus randomized preconditioning so far have been applied almost exclusively to solving regression problems and linear systems. In this article, we show how to expand the application of randomized preconditioning to another important set of problems prevalent across data science: optimization problems with (generalized) orthogonality constraints. We demonstrate our approach, which is based on the framework of Riemannian optimization and Riemannian preconditioning, on the problem of computing the dominant canonical correlations and on the Fisher linear discriminant analysis problem. For both problems, we evaluate the effect of preconditioning on the computational costs and asymptotic convergence, and demonstrate empirically the utility of our approach.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets