Preprocessing to Reduce the Search Space: Antler Structures for Feedback Vertex Set (2106.11675v2)
Abstract: The goal of this paper is to open up a new research direction aimed at understanding the power of preprocessing in speeding up algorithms that solve NP-hard problems exactly. We explore this direction for the classic Feedback Vertex Set problem on undirected graphs, leading to a new type of graph structure called antler decomposition, which identifies vertices that belong to an optimal solution. It is an analogue of the celebrated crown decomposition which has been used for Vertex Cover. We develop the graph structure theory around such decompositions and develop fixed-parameter tractable algorithms to find them, parameterized by the number of vertices for which they witness presence in an optimal solution. This reduces the search space of fixed-parameter tractable algorithms parameterized by the solution size that solve Feedback Vertex Set.
- Kernelization algorithms for the vertex cover problem: Theory and experiments. In Proc. 6th ALENEX/ANALC, pages 62–69, 2004.
- Crown structures for vertex cover kernelization. Theory Comput. Syst., 41(3):411–430, 2007. doi:10.1007/s00224-007-1328-0.
- Presolve reductions in mixed integer programming. INFORMS J. Comput., 32(2):473–506, 2020. doi:10.1287/IJOC.2018.0857.
- Mixed Integer Programming: Analyzing 12 Years of Progress, pages 449–481. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-38189-8_18.
- Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover. Theor. Comput. Sci., 609:211–225, 2016. doi:10.1016/j.tcs.2015.09.023.
- Color-coding. J. ACM, 42(4):844–856, 1995. doi:10.1145/210332.210337.
- Bilu-Linial stability, certified algorithms and the independent set problem. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, Proc. 27th ESA, volume 144 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.7.
- Center-based clustering under perturbation stability. Inf. Process. Lett., 112(1-2):49–54, 2012. doi:10.1016/j.ipl.2011.10.006.
- A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289–297, 1999. doi:10.1137/S0895480196305124.
- (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:10.1145/2973749.
- Kernelization lower bounds by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014. doi:10.1137/120880240.
- Hans L. Bodlaender and Thomas C. van Dijk. A cubic kernel for feedback vertex set and loop cutset. Theory Comput. Syst., 46(3):566–597, 2010. doi:10.1007/s00224-009-9234-2.
- Search-space reduction via essential vertices. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, Proc. 30th ESA, volume 244 of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.30.
- The undirected feedback vertex set problem has a poly(k𝑘kitalic_k) kernel. In Hans L. Bodlaender and Michael A. Langston, editors, Proc. 2nd IWPEC, volume 4169 of Lecture Notes in Computer Science, pages 192–202. Springer, 2006. doi:10.1007/11847250_18.
- Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40-42):3736 – 3756, 2010. doi:10.1016/j.tcs.2010.06.026.
- Linear kernels in linear time, or how to save k𝑘kitalic_k colors in O𝑂Oitalic_O(n2)superscript𝑛2(n^{2})( italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) steps. In Proc. 30th WG, pages 257–269, 2004. doi:10.1007/978-3-540-30559-0_22.
- Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.
- Clustering is difficult only when it does not matter. CoRR, abs/1205.4891, 2012. URL: http://arxiv.org/abs/1205.4891.
- Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:10.1145/2629620.
- Huib Donkers and Bart M. P. Jansen. A turing kernelization dichotomy for structural parameterizations of ℱℱ\mathcal{F}caligraphic_F-minor-free deletion. J. Comput. Syst. Sci., 119:164–182, 2021. doi:10.1016/j.jcss.2021.02.005.
- Parameterized Complexity. Monographs in Computer Science. Springer, New York, 1999.
- Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.
- Andrew Drucker. New limits to classical and quantum instance compression. SIAM J. Comput., 44(5):1443–1479, 2015. doi:10.1137/130927115.
- The PACE 2019 parameterized algorithms and computational experiments challenge: The fourth iteration (invited paper). In Bart M. P. Jansen and Jan Arne Telle, editors, Proc. 14th IPEC, volume 148 of LIPIcs, pages 25:1–25:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.25.
- Michael R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In Hans L. Bodlaender, editor, Proc. 29th WG, volume 2880 of Lecture Notes in Computer Science, pages 1–12. Springer, 2003. doi:10.1007/978-3-540-39890-5_1.
- Michael R. Fellows. The lost continent of polynomial time: Preprocessing and kernelization. In Hans L. Bodlaender and Michael A. Langston, editors, Proc. 2nd IWPEC, volume 4169 of Lecture Notes in Computer Science, pages 276–277. Springer, 2006. doi:10.1007/11847250_25.
- J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006. doi:10.1007/3-540-29953-X.
- Planar ℱℱ\mathcal{F}caligraphic_F-Deletion: Approximation, kernelization and optimal FPT algorithms. In Proc. 53rd FOCS, pages 470–479, 2012. doi:10.1109/FOCS.2012.62.
- Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/9781107415157.
- Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.007.
- Invitation to data reduction and problem kernelization. SIGACT News, 38(1):31–45, 2007. doi:10.1145/1233481.1233493.
- A completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702–730, 2015. doi:10.1007/s00453-014-9910-8.
- Wegotyoucovered: The winning solver from the PACE 2019 challenge, vertex cover track. In H. Martin Bücker, Xiaoye Sherry Li, and Sivasankaran Rajamanickam, editors, Proc. CSC 2020, pages 1–11. SIAM, 2020. doi:10.1137/1.9781611976229.1.
- Scalable kernelization for maximum independent sets. ACM Journal of Experimental Algorithmics, 24(1):1.16:1–1.16:22, 2019. doi:10.1145/3355502.
- Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Proc. 44th ICALP, volume 80 of LIPIcs, pages 68:1–68:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.68.
- Improved analysis of highest-degree branching for feedback vertex set. Algorithmica, 83(8):2503–2520, 2021. doi:10.1007/S00453-021-00815-W.
- Parameter ecology for feedback vertex set. Tsinghua Science and Technology, 19(4):387–409, 2014. doi:10.1109/TST.2014.6867520.
- R. M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.
- Representative sets and irrelevant vertices: New tools for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.
- Faster parameterized algorithms using linear programming. ACM Trans. Algorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.
- Splitters and near-optimal derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 182–191. IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.492475.
- Vertex packings: structural properties and algorithms. Math. Program., 8:232–248, 1975. doi:10.1007/BF01580444.
- Network sparsification for steiner problems on planar and bounded-genus graphs. ACM Trans. Algorithms, 14(4):53:1–53:73, 2018. doi:10.1145/3239560.
- W. V. Quine. The problem of simplifying truth functions. The American Mathematical Monthly, 59(8):521–531, 1952. URL: http://www.jstor.org/stable/2308219, doi:10.2307/2308219.
- Recent techniques and results on the Erdős-Pósa property. Discret. Appl. Math., 231:25–43, 2017. doi:10.1016/j.dam.2016.12.025.
- Stéphan Thomassé. A 4k24superscript𝑘24k^{2}4 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT kernel for feedback vertex set. ACM Trans. Algorithms, 6(2), 2010. doi:10.1145/1721837.1721848.
- P. Toth. Dynamic programming algorithms for the zero-one knapsack problem. Computing, 25:29–45, 1980. doi:10.1007/BF02243880.