Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental Evaluation of Parameterized Algorithms for Feedback Vertex Set (1803.00925v2)

Published 2 Mar 2018 in cs.DS

Abstract: Feedback Vertex Set is a classic combinatorial optimization problem that asks for a minimum set of vertices in a given graph whose deletion makes the graph acyclic. From the point of view of parameterized algorithms and fixed-parameter tractability, Feedback Vertex Set is one of the landmark problems: a long line of study resulted in multiple algorithmic approaches and deep understanding of the combinatorics of the problem. Because of its central role in parameterized complexity, the first edition of the Parameterized Algorithms and Computational Experiments Challenge (PACE) in 2016 featured Feedback Vertex Set as the problem of choice in one of its tracks. The results of PACE 2016 on one hand showed large discrepancy between performance of different classic approaches to the problem, and on the other hand indicated a new approach based on half-integral relaxations of the problem as probably the most efficient approach to the problem. In this paper we provide an exhaustive experimental evaluation of fixed-parameter and branching algorithms for Feedback Vertex Set.

Citations (14)

Summary

We haven't generated a summary for this paper yet.