Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The relation between alternating sign matrices and descending plane partitions: $n+3$ pairs of equivalent statistics (2106.11568v2)

Published 22 Jun 2021 in math.CO, math-ph, and math.MP

Abstract: There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is an open problem for about $40$ years now. So far, quadruples of statistics on ASMs and on DPPs that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ statistics on each extension, and show that the two families of statistics have the same joint distribution. The ASM-DPP equinumerosity is obtained as an easy consequence by considering the $(-1)$-enumerations of these extended objects with respect to one pair of the $n+3$ pairs of statistics. One may speculate that the fact that these extensions might be necessary to have this significance increase in the number of statistics, as well as the involvement of signs when specializing to ASMs and DPPs may hint at the obstacles in finding an explicit bijection between ASMs and DPPs. One important tool for our proof is a multivariate generalization of the operator formula for the number of monotone triangles with prescribed bottom row that generalizes Schur functions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.