Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Second-Order Conic and Polyhedral Approximations of the Exponential Cone: Application to Mixed-Integer Exponential Conic Programs (2106.09123v3)

Published 16 Jun 2021 in math.OC

Abstract: Exponents and logarithms are fundamental components in many important applications such as logistic regression, maximum likelihood, relative entropy, and so on. Since the exponential cone can be viewed as the epigraph of perspective of the natural exponential function or the hypograph of perspective of the natural logarithm function, many mixed-integer convex programs involving exponential or logarithm functions can be recast as mixed-integer exponential conic programs (MIECPs). However, unlike mixed-integer linear programs (MILPs) and mixed-integer second-order conic programs (MISOCPs), MIECPs are still under development. To harvest the past efforts on MILPs and MISOCPs, this paper presents second-order conic (SOC) and polyhedral approximation schemes for the exponential cone with application to MIECPs. To do so, we first extend and generalize existing SOC approximation approaches in the extended space, propose new scaling and shifting methods, prove approximation accuracies, and derive lower bounds of approximations. We then study the polyhedral outer approximation of the exponential cones in the original space using gradient inequalities, show its approximation accuracy, and derive a lower bound of the approximation. When implementing SOC approximations, we suggest learning the approximation pattern by testing smaller cases and then applying it to the large-scale ones; and for the polyhedral approximation, we suggest using the branch and cut method for MIECPs. Our numerical study shows that the proposed methods show speed-ups over solver MOSEK for MIECPs, and the scaling, shifting, and polyhedral outer approximation methods work very well.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)