Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alternated Training with Synthetic and Authentic Data for Neural Machine Translation (2106.08582v1)

Published 16 Jun 2021 in cs.CL

Abstract: While synthetic bilingual corpora have demonstrated their effectiveness in low-resource neural machine translation (NMT), adding more synthetic data often deteriorates translation performance. In this work, we propose alternated training with synthetic and authentic data for NMT. The basic idea is to alternate synthetic and authentic corpora iteratively during training. Compared with previous work, we introduce authentic data as guidance to prevent the training of NMT models from being disturbed by noisy synthetic data. Experiments on Chinese-English and German-English translation tasks show that our approach improves the performance over several strong baselines. We visualize the BLEU landscape to further investigate the role of authentic and synthetic data during alternated training. From the visualization, we find that authentic data helps to direct the NMT model parameters towards points with higher BLEU scores and leads to consistent translation performance improvement.

Citations (10)

Summary

We haven't generated a summary for this paper yet.