Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tag-less Back-Translation (1912.10514v3)

Published 22 Dec 2019 in cs.CL, cs.AI, and cs.LG

Abstract: An effective method to generate a large number of parallel sentences for training improved neural machine translation (NMT) systems is the use of the back-translations of the target-side monolingual data. The standard back-translation method has been shown to be unable to efficiently utilize the available huge amount of existing monolingual data because of the inability of translation models to differentiate between the authentic and synthetic parallel data during training. Tagging, or using gates, has been used to enable translation models to distinguish between synthetic and authentic data, improving standard back-translation and also enabling the use of iterative back-translation on language pairs that underperformed using standard back-translation. In this work, we approach back-translation as a domain adaptation problem, eliminating the need for explicit tagging. In the approach -- \emph{tag-less back-translation} -- the synthetic and authentic parallel data are treated as out-of-domain and in-domain data respectively and, through pre-training and fine-tuning, the translation model is shown to be able to learn more efficiently from them during training. Experimental results have shown that the approach outperforms the standard and tagged back-translation approaches on low resource English-Vietnamese and English-German neural machine translation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Idris Abdulmumin (39 papers)
  2. Bashir Shehu Galadanci (7 papers)
  3. Aliyu Garba (1 paper)
Citations (11)