Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

CODA: Constructivism Learning for Instance-Dependent Dropout Architecture Construction (2106.08444v1)

Published 15 Jun 2021 in cs.LG and stat.ML

Abstract: Dropout is attracting intensive research interest in deep learning as an efficient approach to prevent overfitting. Recently incorporating structural information when deciding which units to drop out produced promising results comparing to methods that ignore the structural information. However, a major issue of the existing work is that it failed to differentiate among instances when constructing the dropout architecture. This can be a significant deficiency for many applications. To solve this issue, we propose Constructivism learning for instance-dependent Dropout Architecture (CODA), which is inspired from a philosophical theory, constructivism learning. Specially, based on the theory we have designed a better drop out technique, Uniform Process Mixture Models, using a Bayesian nonparametric method Uniform process. We have evaluated our proposed method on 5 real-world datasets and compared the performance with other state-of-the-art dropout techniques. The experimental results demonstrated the effectiveness of CODA.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube