Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Ehrhart polynomials of rank two matroids (2106.08183v3)

Published 15 Jun 2021 in math.CO

Abstract: Over a decade ago De Loera, Haws and K\"oppe conjectured that Ehrhart polynomials of matroid polytopes have only positive coefficients and that the coefficients of the corresponding $h*$-polynomials form a unimodal sequence. The first of these intensively studied conjectures has recently been disproved by the first author who gave counterexamples in all ranks greater or equal to three. In this article we complete the picture by showing that Ehrhart polynomials of matroids of lower rank have indeed only positive coefficients. Moreover, we show that they are coefficient-wise bounded by the Ehrhart polynomials of minimal and uniform matroids. We furthermore address the second conjecture by proving that $h*$-polynomials of matroid polytopes of sparse paving matroids of rank two are real-rooted and therefore have log-concave and unimodal coefficients. In particular, this shows that the $h*$-polynomial of the second hypersimplex is real-rooted thereby strengthening a result of De Loera, Haws and K\"oppe.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.