Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When a system of real quadratic equations has a solution (2106.08119v2)

Published 15 Jun 2021 in math.OC, cs.DS, and math.AG

Abstract: We provide a sufficient condition for solvability of a system of real quadratic equations $p_i(x)=y_i$, $i=1, \ldots, m$, where $p_i: {\mathbb R}n \longrightarrow {\mathbb R}$ are quadratic forms. By solving a positive semidefinite program, one can reduce it to another system of the type $q_i(x)=\alpha_i$, $i=1, \ldots, m$, where $q_i: {\mathbb R}n \longrightarrow {\mathbb R}$ are quadratic forms and $\alpha_i=\mathrm{tr\ } q_i$. We prove that the latter system has solution $x \in {\mathbb R}n$ if for some (equivalently, for any) orthonormal basis $A_1,\ldots, A_m$ in the space spanned by the matrices of the forms $q_i$, the operator norm of $A_12 + \ldots + A_m2$ does not exceed $\eta/m$ for some absolute constant $\eta > 0$. The condition can be checked in polynomial time and is satisfied, for example, for random $q_i$ provided $m \leq \gamma \sqrt{n}$ for an absolute constant $\gamma >0$. We prove a similar sufficient condition for a system of homogeneous quadratic equations to have a non-trivial solution. While the condition we obtain is of an algebraic nature, the proof relies on analytic tools including Fourier analysis and measure concentration.

Summary

We haven't generated a summary for this paper yet.