Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating products of quadratic forms (2002.07249v1)

Published 17 Feb 2020 in math.PR, cs.DS, math.MG, and math.OC

Abstract: We prove that if $q_1, \ldots, q_m: {\Bbb R}n \longrightarrow {\Bbb R}$ are quadratic forms in variables $x_1, \ldots, x_n$ such that each $q_k$ depends on at most $r$ variables and each $q_k$ has common variables with at most $r$ other forms, then the average value of the product $\left(1+ q_1\right) \cdots \left(1+q_m\right)$ with respect to the standard Gaussian measure in ${\Bbb R}n$ can be approximated within relative error $\epsilon >0$ in quasi-polynomial $n{O(1)} m{O(\ln m -\ln \epsilon)}$ time, provided $|q_k(x)| \leq \gamma |x|2 /r$ for some absolute constant $\gamma > 0$ and $k=1, \ldots, m$. When $q_k$ are interpreted as pairwise squared distances for configurations of points in Euclidean space, the average can be interpreted as the partition function of systems of particles with mollified logarithmic potentials. We sketch a possible application to testing the feasibility of systems of real quadratic equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.