Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fundamentals of Partial Rejection Sampling (2106.07744v2)

Published 14 Jun 2021 in cs.DS, cs.DM, and math.PR

Abstract: Partial Rejection Sampling is an algorithmic approach to obtaining a perfect sample from a specified distribution. The objects to be sampled are assumed to be represented by a number of random variables. In contrast to classical rejection sampling, in which all variables are resampled until a feasible solution is found, partial rejection sampling aims at greater efficiency by resampling only a subset of variables that `go wrong'. Partial rejection sampling is closely related to Moser and Tardos' algorithmic version of the Lov\'asz Local Lemma, but with the additional requirement that a specified output distribution should be met. This article provides a largely self-contained account of the basic form of the algorithm and its analysis.

Citations (10)

Summary

We haven't generated a summary for this paper yet.