Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Moser-Tardos Framework with Partial Resampling (1406.5943v5)

Published 23 Jun 2014 in math.CO and cs.DS

Abstract: The resampling algorithm of Moser & Tardos is a powerful approach to develop constructive versions of the Lov\'{a}sz Local Lemma (LLL). We generalize this to partial resampling: when a bad event holds, we resample an appropriately-random subset of the variables that define this event, rather than the entire set as in Moser & Tardos. This is particularly useful when the bad events are determined by sums of random variables. This leads to several improved algorithmic applications in scheduling, graph transversals, packet routing etc. For instance, we settle a conjecture of Szab\'{o} & Tardos (2006) on graph transversals asymptotically, and obtain improved approximation ratios for a packet routing problem of Leighton, Maggs, & Rao (1994).

Citations (58)

Summary

We haven't generated a summary for this paper yet.