Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DAIR: Disentangled Attention Intrinsic Regularization for Safe and Efficient Bimanual Manipulation (2106.05907v4)

Published 10 Jun 2021 in cs.LG and cs.RO

Abstract: We address the problem of safely solving complex bimanual robot manipulation tasks with sparse rewards. Such challenging tasks can be decomposed into sub-tasks that are accomplishable by different robots concurrently or sequentially for better efficiency. While previous reinforcement learning approaches primarily focus on modeling the compositionality of sub-tasks, two fundamental issues are largely ignored particularly when learning cooperative strategies for two robots: (i) domination, i.e., one robot may try to solve a task by itself and leaves the other idle; (ii) conflict, i.e., one robot can interrupt another's workspace when executing different sub-tasks simultaneously, which leads to unsafe collisions. To tackle these two issues, we propose a novel technique called disentangled attention, which provides an intrinsic regularization for two robots to focus on separate sub-tasks and objects. We evaluate our method on five bimanual manipulation tasks. Experimental results show that our proposed intrinsic regularization successfully avoids domination and reduces conflicts for the policies, which leads to significantly more efficient and safer cooperative strategies than all the baselines. Our project page with videos is at https://mehooz.github.io/bimanual-attention.

Citations (8)

Summary

We haven't generated a summary for this paper yet.