Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Language Models for Orchestrating Bimanual Robots (2404.02018v2)

Published 2 Apr 2024 in cs.RO and cs.AI

Abstract: Although there has been rapid progress in endowing robots with the ability to solve complex manipulation tasks, generating control policies for bimanual robots to solve tasks involving two hands is still challenging because of the difficulties in effective temporal and spatial coordination. With emergent abilities in terms of step-by-step reasoning and in-context learning, LLMs have demonstrated promising potential in a variety of robotic tasks. However, the nature of language communication via a single sequence of discrete symbols makes LLM-based coordination in continuous space a particular challenge for bimanual tasks. To tackle this challenge, we present LAnguage-model-based Bimanual ORchestration (LABOR), an agent utilizing an LLM to analyze task configurations and devise coordination control policies for addressing long-horizon bimanual tasks. We evaluate our method through simulated experiments involving two classes of long-horizon tasks using the NICOL humanoid robot. Our results demonstrate that our method outperforms the baseline in terms of success rate. Additionally, we thoroughly analyze failure cases, offering insights into LLM-based approaches in bimanual robotic control and revealing future research trends. The project website can be found at http://labor-agent.github.io.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. S. S. Mirrazavi Salehian, N. B. Figueroa Fernandez, and A. Billard, “Dynamical system-based motion planning for multi-arm systems: Reaching for moving objects,” in Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), 2017, pp. 4914–4918.
  2. J. Grannen, Y. Wu, S. Belkhale, and D. Sadigh, “Learning bimanual scooping policies for food acquisition,” in 6th Annual Conference on Robot Learning, 2022. [Online]. Available: https://openreview.net/forum?id=qDtbMK67PJG
  3. R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta, “Efficient bimanual manipulation using learned task schemas,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 1149–1155.
  4. K. S. Luck and H. B. Amor, “Extracting bimanual synergies with reinforcement learning,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 4805–4812.
  5. R. Zollner, T. Asfour, and R. Dillmann, “Programming by demonstration: dual-arm manipulation tasks for humanoid robots,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 1.   IEEE, 2004, pp. 479–484.
  6. S. Stepputtis, M. Bandari, S. Schaal, and H. B. Amor, “A system for imitation learning of contact-rich bimanual manipulation policies,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 11 810–11 817.
  7. C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas, and D. Kragic, “Dual arm manipulation—a survey,” Robotics and Autonomous systems, vol. 60, no. 10, pp. 1340–1353, 2012.
  8. J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,” in Advances in Neural Information Processing Systems, May 2022. [Online]. Available: https://openreview.net/forum?id=_VjQlMeSB_J
  9. X. Zhao, M. Li, W. Lu, C. Weber, J. H. Lee, K. Chu, and S. Wermter, “Enhancing zero-shot chain-of-thought reasoning in large language models through logic,” in 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), May 2024.
  10. S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of Artificial General Intelligence: Early experiments with GPT-4,” no. arXiv:2303.12712, p. 2303.12712, Apr. 2023. [Online]. Available: http://arxiv.org/abs/2303.12712
  11. M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, et al., “Do as I can, not as I say: Grounding language in robotic affordances,” arXiv preprint arXiv:2204.01691, 2022.
  12. X. Zhao, M. Li, C. Weber, M. B. Hafez, and S. Wermter, “Chat with the Environment: Interactive Multimodal Perception using Large Language Models,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), no. arXiv:2303.08268.   arXiv, Oct. 2023, p. 2303.08268. [Online]. Available: http://arxiv.org/abs/2303.08268
  13. J. Zhang, J. Zhang, K. Pertsch, Z. Liu, X. Ren, M. Chang, S.-H. Sun, and J. J. Lim, “Bootstrap Your Own Skills: Learning to Solve New Tasks with Large Language Model Guidance,” in 7th Annual Conference on Robot Learning.   arXiv, Oct. 2023, p. 2310.10021. [Online]. Available: http://arxiv.org/abs/2310.10021
  14. M. Kerzel, P. Allgeuer, E. Strahl, N. Frick, J.-G. Habekost, M. Eppe, and S. Wermter, “NICOL: A neuro-inspired collaborative semi-humanoid robot that bridges social interaction and reliable manipulation,” IEEE Access, vol. 11, pp. 123 531–123 542, 2023.
  15. Y. Koga and J.-C. Latombe, “Experiments in dual-arm manipulation planning,” in Proceedings 1992 IEEE International Conference on Robotics and Automation (ICRA).   IEEE Computer Society, 1992, pp. 2238–2239.
  16. P. Lertkultanon and Q.-C. Pham, “A certified-complete bimanual manipulation planner,” IEEE Transactions on Automation Science and Engineering, vol. 15, no. 3, pp. 1355–1368, 2018.
  17. E. Ng, Z. Liu, and M. Kennedy, “It takes two: Learning to plan for human-robot cooperative carrying,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 7526–7532.
  18. Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer, H. Dong, S.-C. Zhu, and Y. Yang, “Towards human-level bimanual dexterous manipulation with reinforcement learning,” Advances in Neural Information Processing Systems, vol. 35, pp. 5150–5163, 2022.
  19. F. Amadio, A. Colomé, and C. Torras, “Exploiting symmetries in reinforcement learning of bimanual robotic tasks,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1838–1845, 2019.
  20. R. Lioutikov, O. Kroemer, G. Maeda, and J. Peters, “Learning manipulation by sequencing motor primitives with a two-armed robot,” in Intelligent Autonomous Systems 13: Proceedings of the 13th International Conference (IAS-13).   Springer, 2016, pp. 1601–1611.
  21. L. P. Ureche and A. Billard, “Constraints extraction from asymmetrical bimanual tasks and their use in coordinated behavior,” Robotics and autonomous systems, vol. 103, pp. 222–235, 2018.
  22. O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning for manipulation: Challenges, representations, and algorithms,” Journal of machine learning research, vol. 22, no. 30, pp. 1–82, 2021.
  23. M. Li*, X. Zhao*, J. H. Lee, C. Weber, and S. Wermter, “Internally Rewarded Reinforcement Learning,” in 40th International Conference on Machine Learning (ICML), July 2023, p. 2302.00270. [Online]. Available: http://arxiv.org/abs/2302.00270
  24. X. Zhao, C. Weber, M. B. Hafez, and S. Wermter, “Impact Makes a Sound and Sound Makes an Impact: Sound Guides Representations and Explorations,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 2512–2518.
  25. S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans, “Foundation Models for Decision Making: Problems, Methods, and Opportunities,” arXiv preprint arXiv:2303.04129, p. 2303.04129, 2023.
  26. W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “VoxPoser: Composable 3D value maps for robotic manipulation with language models,” in 7th Annual Conference on Robot Learning, 2023, p. 2307.05973. [Online]. Available: https://openreview.net/forum?id=9_8LF30mOC
  27. G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar, “Voyager: An Open-Ended Embodied Agent with Large Language Models,” no. arXiv:2305.16291, p. 2305.16291, Oct. 2023. [Online]. Available: http://arxiv.org/abs/2305.16291
  28. J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, b. ichter, P. Florence, and A. Zeng, “Code as policies: Language model programs for embodied control,” in Workshop on Language and Robotics at CoRL 2022, 2022, p. 2209.07753. [Online]. Available: https://openreview.net/forum?id=fmtvpopfLC6
  29. Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-Level Reward Design via Coding Large Language Models,” no. arXiv:2310.12931, p. 2310.12931, Oct. 2023. [Online]. Available: http://arxiv.org/abs/2310.12931
  30. K. Chu, X. Zhao, C. Weber, M. Li, and S. Wermter, “Accelerating reinforcement learning of robotic manipulations via feedback from large language models,” in 7th Conference on Robot Learning (CoRL 2023) Workshop , Atlanta, Georgia USA, Nov. 2023.
  31. J. R. Boehm, N. P. Fey, and A. M. Fey, “Online recognition of bimanual coordination provides important context for movement data in bimanual teleoperated robots,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 6248–6255.
  32. F. Krebs and T. Asfour, “A bimanual manipulation taxonomy,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 031–11 038, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com