On arithmetic Dijkgraaf-Witten theory (2106.02308v3)
Abstract: We present basic constructions and properties in arithmetic Chern-Simons theory with finite gauge group along the line of topological quantum field theory. For a finite set $S$ of finite primes of a number field $k$, we construct arithmetic analogues of the Chern-Simons 1-cocycle, the prequantization bundle for a surface and the Chern-Simons functional for a $3$-manifold. We then construct arithmetic analogues for $k$ and $S$ of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf-Witten partition function in (2+1)-dimensional Chern-Simons TQFT. We show some basic and functorial properties of those arithmetic analogues. Finally we show decomposition and gluing formulas for arithmetic Chern-Simons invariants and arithmetic Dijkgraaf-Witten partition functions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.