Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Privacy-Preserving and Trustable Multi-agent Learning Framework (2106.01242v1)

Published 2 Jun 2021 in cs.LG, cs.AI, and cs.CR

Abstract: Distributed multi-agent learning enables agents to cooperatively train a model without requiring to share their datasets. While this setting ensures some level of privacy, it has been shown that, even when data is not directly shared, the training process is vulnerable to privacy attacks including data reconstruction and model inversion attacks. Additionally, malicious agents that train on inverted labels or random data, may arbitrarily weaken the accuracy of the global model. This paper addresses these challenges and presents Privacy-preserving and trustable Distributed Learning (PT-DL), a fully decentralized framework that relies on Differential Privacy to guarantee strong privacy protections of the agents' data, and Ethereum smart contracts to ensure trustability. The paper shows that PT-DL is resilient up to a 50% collusion attack, with high probability, in a malicious trust model and the experimental evaluation illustrates the benefits of the proposed model as a privacy-preserving and trustable distributed multi-agent learning system on several classification tasks.

Summary

We haven't generated a summary for this paper yet.