Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving, Dropout-Resilient Aggregation in Decentralized Learning (2404.17984v1)

Published 27 Apr 2024 in cs.CR and cs.AI

Abstract: Decentralized learning (DL) offers a novel paradigm in machine learning by distributing training across clients without central aggregation, enhancing scalability and efficiency. However, DL's peer-to-peer model raises challenges in protecting against inference attacks and privacy leaks. By forgoing central bottlenecks, DL demands privacy-preserving aggregation methods to protect data from 'honest but curious' clients and adversaries, maintaining network-wide privacy. Privacy-preserving DL faces the additional hurdle of client dropout, clients not submitting updates due to connectivity problems or unavailability, further complicating aggregation. This work proposes three secret sharing-based dropout resilience approaches for privacy-preserving DL. Our study evaluates the efficiency, performance, and accuracy of these protocols through experiments on datasets such as MNIST, Fashion-MNIST, SVHN, and CIFAR-10. We compare our protocols with traditional secret-sharing solutions across scenarios, including those with up to 1000 clients. Evaluations show that our protocols significantly outperform conventional methods, especially in scenarios with up to 30% of clients dropout and model sizes of up to $106$ parameters. Our approaches demonstrate markedly high efficiency with larger models, higher dropout rates, and extensive client networks, highlighting their effectiveness in enhancing decentralized learning systems' privacy and dropout robustness.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com