Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Systematic investigation into generalization of COVID-19 CT deep learning models with Gabor ensemble for lung involvement scoring (2105.15094v1)

Published 20 Apr 2021 in cs.CV, cs.LG, and eess.IV

Abstract: The COVID-19 pandemic has inspired unprecedented data collection and computer vision modelling efforts worldwide, focusing on diagnosis and stratification of COVID-19 from medical images. Despite this large-scale research effort, these models have found limited practical application due in part to unproven generalization of these models beyond their source study. This study investigates the generalizability of key published models using the publicly available COVID-19 Computed Tomography data through cross dataset validation. We then assess the predictive ability of these models for COVID-19 severity using an independent new dataset that is stratified for COVID-19 lung involvement. Each inter-dataset study is performed using histogram equalization, and contrast limited adaptive histogram equalization with and without a learning Gabor filter. The study shows high variability in the generalization of models trained on these datasets due to varied sample image provenances and acquisition processes amongst other factors. We show that under certain conditions, an internally consistent dataset can generalize well to an external dataset despite structural differences between these datasets with f1 scores up to 86%. Our best performing model shows high predictive accuracy for lung involvement score for an independent dataset for which expertly labelled lung involvement stratification is available. Creating an ensemble of our best model for disease positive prediction with our best model for disease negative prediction using a min-max function resulted in a superior model for lung involvement prediction with average predictive accuracy of 75% for zero lung involvement and 96% for 75-100% lung involvement with almost linear relationship between these stratifications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.