Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SHAQ: Incorporating Shapley Value Theory into Multi-Agent Q-Learning (2105.15013v7)

Published 31 May 2021 in cs.LG, cs.AI, and cs.MA

Abstract: Value factorisation is a useful technique for multi-agent reinforcement learning (MARL) in global reward game, however its underlying mechanism is not yet fully understood. This paper studies a theoretical framework for value factorisation with interpretability via Shapley value theory. We generalise Shapley value to Markov convex game called Markov Shapley value (MSV) and apply it as a value factorisation method in global reward game, which is obtained by the equivalence between the two games. Based on the properties of MSV, we derive Shapley-BeLLMan optimality equation (SBOE) to evaluate the optimal MSV, which corresponds to an optimal joint deterministic policy. Furthermore, we propose Shapley-BeLLMan operator (SBO) that is proved to solve SBOE. With a stochastic approximation and some transformations, a new MARL algorithm called Shapley Q-learning (SHAQ) is established, the implementation of which is guided by the theoretical results of SBO and MSV. We also discuss the relationship between SHAQ and relevant value factorisation methods. In the experiments, SHAQ exhibits not only superior performances on all tasks but also the interpretability that agrees with the theoretical analysis. The implementation of this paper is on https://github.com/hsvgbkhgbv/shapley-q-learning.

Citations (18)

Summary

We haven't generated a summary for this paper yet.