Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An iterative Jacobi-like algorithm to compute a few sparse eigenvalue-eigenvector pairs (2105.14642v2)

Published 30 May 2021 in math.NA, cs.NA, and eess.SP

Abstract: In this paper, we describe a new algorithm to compute the extreme eigenvalue/eigenvector pairs of a symmetric matrix. The proposed algorithm can be viewed as an extension of the Jacobi transformation method for symmetric matrix diagonalization to the case where we want to compute just a few eigenvalues/eigenvectors. The method is also particularly well suited for the computation of sparse eigenspaces. We show the effectiveness of the method for sparse low-rank approximations and show applications to random symmetric matrices, graph Fourier transforms, and with the sparse principal component analysis in image classification experiments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.