Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT (2105.14625v3)

Published 30 May 2021 in cs.LG

Abstract: A surrogate model based hyperparameter tuning approach for deep learning is presented. This article demonstrates how the architecture-level parameters (hyperparameters) of deep learning models that were implemented in Keras/tensorflow can be optimized. The implementation of the tuning procedure is 100% accessible from R, the software environment for statistical computing. With a few lines of code, existing R packages (tfruns and SPOT) can be combined to perform hyperparameter tuning. An elementary hyperparameter tuning task (neural network and the MNIST data) is used to exemplify this approach

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.