Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The q-Gauss-Newton method for unconstrained nonlinear optimization (2105.12994v1)

Published 27 May 2021 in math.OC and cs.CC

Abstract: A q-Gauss-Newton algorithm is an iterative procedure that solves nonlinear unconstrained optimization problems based on minimization of the sum squared errors of the objective function residuals. Main advantage of the algorithm is that it approximates matrix of q-second order derivatives with the first-order q-Jacobian matrix. For that reason, the algorithm is much faster than q-steepest descent algorithms. The convergence of q-GN method is assured only when the initial guess is close enough to the solution. In this paper the influence of the parameter q to the non-linear problem solving is presented through three examples. The results show that the q-GD algorithm finds an optimal solution and speeds up the iterative procedure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.