Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Newton based Stochastic Optimization using q-Gaussian Smoothed Functional Algorithms (1311.2296v2)

Published 10 Nov 2013 in math.OC, cs.IT, and math.IT

Abstract: We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar et al., 2013), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on smoothed functional algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work and turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of several numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian (Bhatnagar, 2007) and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms (Ghoshdastidar et al., 2013).

Citations (3)

Summary

We haven't generated a summary for this paper yet.