Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word Embedding Transformation for Robust Unsupervised Bilingual Lexicon Induction (2105.12297v1)

Published 26 May 2021 in cs.CL

Abstract: Great progress has been made in unsupervised bilingual lexicon induction (UBLI) by aligning the source and target word embeddings independently trained on monolingual corpora. The common assumption of most UBLI models is that the embedding spaces of two languages are approximately isomorphic. Therefore the performance is bound by the degree of isomorphism, especially on etymologically and typologically distant languages. To address this problem, we propose a transformation-based method to increase the isomorphism. Embeddings of two languages are made to match with each other by rotating and scaling. The method does not require any form of supervision and can be applied to any language pair. On a benchmark data set of bilingual lexicon induction, our approach can achieve competitive or superior performance compared to state-of-the-art methods, with particularly strong results being found on distant languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hailong Cao (9 papers)
  2. Tiejun Zhao (70 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.