Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Semi-Supervised Learning for Bilingual Lexicon Induction (2402.07028v1)

Published 10 Feb 2024 in cs.CL and cs.LG

Abstract: We consider the problem of aligning two sets of continuous word representations, corresponding to languages, to a common space in order to infer a bilingual lexicon. It was recently shown that it is possible to infer such lexicon, without using any parallel data, by aligning word embeddings trained on monolingual data. Such line of work is called unsupervised bilingual induction. By wondering whether it was possible to gain experience in the progressive learning of several languages, we asked ourselves to what extent we could integrate the knowledge of a given set of languages when learning a new one, without having parallel data for the latter. In other words, while keeping the core problem of unsupervised learning in the latest step, we allowed the access to other corpora of idioms, hence the name semi-supervised. This led us to propose a novel formulation, considering the lexicon induction as a ranking problem for which we used recent tools of this machine learning field. Our experiments on standard benchmarks, inferring dictionary from English to more than 20 languages, show that our approach consistently outperforms existing state of the art benchmark. In addition, we deduce from this new scenario several relevant conclusions allowing a better understanding of the alignment phenomenon.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets