Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analogical discovery of disordered perovskite oxides by crystal structure information hidden in unsupervised material fingerprints (2105.11877v1)

Published 25 May 2021 in cond-mat.mtrl-sci, cond-mat.dis-nn, and cs.AI

Abstract: Compositional disorder induces myriad captivating phenomena in perovskites. Target-driven discovery of perovskite solid solutions has been a great challenge due to the analytical complexity introduced by disorder. Here, we demonstrate that an unsupervised deep learning strategy can find fingerprints of disordered materials that embed perovskite formability and underlying crystal structure information by learning only from the chemical composition, manifested in (A1-xA'x)BO3 and A(B1-xB'x)O3 formulae. This phenomenon can be capitalized to predict the crystal symmetry of experimental compositions, outperforming several supervised ML algorithms. The educated nature of material fingerprints has led to the conception of analogical materials discovery that facilitates inverse exploration of promising perovskites based on similarity investigation with known materials. The search space of unstudied perovskites is screened from ~600,000 feasible compounds using experimental data powered ML models and automated web mining tools at a 94% success rate. This concept further provides insights on possible phase transitions and computational modelling of complex compositions. The proposed quantitative analysis of materials analogies is expected to bridge the gap between the existing materials literature and the undiscovered terrain.

Citations (21)

Summary

We haven't generated a summary for this paper yet.