Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Value of Multistage Risk-Averse Stochastic Facility Location With or Without Prioritization (2105.11005v2)

Published 23 May 2021 in math.OC

Abstract: We consider a multiperiod stochastic capacitated facility location problem under uncertain demand and budget in each period. Using a scenario tree representation of the uncertainties, we formulate a multistage stochastic integer program to dynamically locate facilities in each period and compare it with a two-stage approach that determines the facility locations up front. In the multistage model, in each stage, a decision maker optimizes facility locations and recourse flows from open facilities to demand sites, to minimize certain risk measures of the cost associated with current facility location and shipment decisions. When the budget is also uncertain, a popular modeling framework is to prioritize the candidate sites. In the two-stage model, the priority list is decided in advance and fixed through all periods, while in the multistage model, the priority list can change adaptively. In each period, the decision maker follows the priority list to open facilities according to the realized budget, and optimizes recourse flows given the realized demand. Using expected conditional risk measures (ECRMs), we derive tight lower bounds for the gaps between the optimal objective values of risk-averse multistage models and their two-stage counterparts in both settings with and without prioritization. Moreover, we propose two approximation algorithms to efficiently solve risk-averse two-stage and multistage models without prioritization, which are asymptotically optimal under an expanding market assumption. We also design a set of super-valid inequalities for risk-averse two-stage and multistage stochastic programs with prioritization to reduce the computational time. We conduct numerical studies using both randomly generated and real-world instances with diverse sizes, to demonstrate the tightness of the analytical bounds and efficacy of the approximation algorithms and prioritization cuts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube