Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Centralized Learning of the Distributed Downlink Channel Estimators in FDD Systems using Uplink Data (2105.10746v2)

Published 22 May 2021 in cs.IT, eess.SP, and math.IT

Abstract: In this work, we propose a convolutional neural network (CNN) based low-complexity approach for downlink (DL) channel estimation (CE) in frequency division duplex (FDD) systems. In contrast to existing work, we use training data which solely stems from the uplink (UL) domain. This allows to learn the CNN centralized at the base station (BS). After training, the network parameters are offloaded to mobile terminals (MTs) within the coverage area of the BS. The MTs can then obtain channel state information (CSI) of the MIMO channels with the low-complexity CNN estimator. This circumvents the necessity of an infeasible amount of feedback, i.e., acquisition of training data at the user, and the offline training phase at each MT. Numerical results show that the CNN which is trained solely based on UL data performs equally well as the network trained based on DL data. Furthermore, the approach is able to outperform state-of-the-art CE algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.