Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Design of Safe Output Feedback Controllers from Noisy Data (2105.10280v2)

Published 21 May 2021 in eess.SY and cs.SY

Abstract: As we transition towards the deployment of data-driven controllers for black-box cyberphysical systems, complying with hard safety constraints becomes a primary concern. Two key aspects should be addressed when input-output data are corrupted by noise: how much uncertainty can one tolerate without compromising safety, and to what extent is the control performance affected? By focusing on finite-horizon constrained linear-quadratic problems, we provide an answer to these questions in terms of the model mismatch incurred during a preliminary identification phase. We propose a control design procedure based on a quasiconvex relaxation of the original robust problem and we prove that, if the uncertainty is sufficiently small, the synthesized controller is safe and near-optimal, in the sense that the suboptimality gap increases linearly with the model mismatch level. Since the proposed method is independent of the specific identification procedure, our analysis holds in combination with state-of-the-art behavioral estimators beyond standard least-squares. The main theoretical results are validated by numerical experiments.

Citations (18)

Summary

We haven't generated a summary for this paper yet.