Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Control Barrier Functions using Uncertainty Estimation with Application to Mobile Robots (2401.01881v2)

Published 3 Jan 2024 in eess.SY, cs.RO, and cs.SY

Abstract: This paper proposes a safety-critical control design approach for nonlinear control affine systems in the presence of matched and unmatched uncertainties. Our constructive framework couples control barrier function (CBF) theory with a new uncertainty estimator to ensure robust safety. The estimated uncertainty with a derived upper bound on the estimation error is used for synthesizing CBFs and safety-critical controllers via a quadratic program-based feedback control law that rigorously ensures robust safety while improving disturbance rejection performance. The method is extended to higher-order CBFs (HOCBFs) to achieve safety under unmatched uncertainty, which may cause relative degree differences with respect to control input and disturbances. We assume the relative degree difference is at most one, resulting in a second-order cone constraint. The proposed robust HOCBF method is demonstrated via a simulation of an uncertain elastic actuator control problem. Finally, we experimentally demonstrated the efficacy of our robust CBF framework on a tracked robot with slope-induced matched and unmatched perturbations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced robots: A survey,” Robotics and Autonomous Systems, vol. 94, pp. 43–52, 2017.
  2. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.
  3. K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. D. Ames, and M. N. Zeilinger, “Data-driven safety filters: Hamilton-jacobi reachability, control barrier functions, and predictive methods for uncertain systems,” IEEE Control Systems Magazine, vol. 43, no. 5, pp. 137–177, 2023.
  4. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in European Control Conf., 2019, pp. 3420–3431.
  5. K.-C. Hsu, H. Hu, and J. F. Fisac, “The safety filter: A unified view of safety-critical control in autonomous systems,” arXiv preprint arXiv:2309.05837, 2023.
  6. K. L. Hobbs, M. L. Mote, M. C. Abate, S. D. Coogan, and E. M. Feron, “Runtime assurance for safety-critical systems: An introduction to safety filtering approaches for complex control systems,” IEEE Control Systems Magazine, vol. 43, no. 2, pp. 28–65, 2023.
  7. A. Alan, A. J. Taylor, C. R. He, A. D. Ames, and G. Orosz, “Control barrier functions and input-to-state safety with application to automated vehicles,” IEEE Trans. Control Systems Tech., 2023.
  8. A. Singletary, A. Swann, Y. Chen, and A. D. Ames, “Onboard safety guarantees for racing drones: High-speed geofencing with control barrier functions,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2897–2904, 2022.
  9. R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered safety for legged robots via control barrier functions and model predictive control,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 8352–8358.
  10. A. Agrawal and K. Sreenath, “Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation.” in Robotics: Science and Systems, vol. 13.   Cambridge, MA, USA, 2017, pp. 1–10.
  11. F. Ferraguti, C. T. Landi, S. Costi, M. Bonfè, S. Farsoni, C. Secchi, and C. Fantuzzi, “Safety barrier functions and multi-camera tracking for human–robot shared environment,” Robotics and Autonomous Systems, vol. 124, p. 103388, 2020.
  12. X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, 2015.
  13. A. Alan, T. G. Molnar, A. D. Ames, and G. Orosz, “Parameterized barrier functions to guarantee safety under uncertainty,” IEEE Control Systems Letters, 2023.
  14. M. Jankovic, “Robust control barrier functions for constrained stabilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367, 2018.
  15. S. Kolathaya, J. Reher, A. Hereid, and A. D. Ames, “Input to state stabilizing control Lyapunov functions for robust bipedal robotic locomotion,” in 2018 Annual American Control Conference (ACC).   IEEE, 2018, pp. 2224–2230.
  16. Q. Nguyen and K. Sreenath, “Robust safety-critical control for dynamic robotics,” IEEE Transactions on Automatic Control, 2021.
  17. A. Alan, A. J. Taylor, C. R. He, G. Orosz, and A. D. Ames, “Safe controller synthesis with tunable input-to-state safe control barrier functions,” IEEE Control Systems Letters, 2021.
  18. B. T. Lopez and J.-J. E. Slotine, “Unmatched control barrier functions: Certainty equivalence adaptive safety,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 3662–3668.
  19. A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier functions,” in American Control Conference, 2020, pp. 1399–1405.
  20. B. T. Lopez, J.-J. E. Slotine, and J. P. How, “Robust adaptive control barrier functions: An adaptive and data-driven approach to safety,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 1031–1036, 2020.
  21. M. Black, E. Arabi, and D. Panagou, “A fixed-time stable adaptation law for safety-critical control under parametric uncertainty,” in European Control Conf., 2021, pp. 1328–1333.
  22. M. H. Cohen, C. Belta, and R. Tron, “Robust control barrier functions for nonlinear control systems with uncertainty: A duality-based approach,” in Conf. Decision and Control, 2022, pp. 174–179.
  23. W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based control and related methods—an overview,” IEEE Transactions on industrial electronics, vol. 63, no. 2, pp. 1083–1095, 2015.
  24. B. Kürkçü, C. Kasnakoğlu, M. Ö. Efe, and R. Su, “On the existence of equivalent-input-disturbance and multiple integral augmentation via H-infinity synthesis for unmatched systems,” ISA transactions, vol. 131, pp. 299–310, 2022.
  25. P. Zhao, Y. Mao, C. Tao, N. Hovakimyan, and X. Wang, “Adaptive robust quadratic programs using control lyapunov and barrier functions,” in IEEE Conf. Decision and Control.   IEEE, 2020, pp. 3353–3358.
  26. E. Daş and R. M. Murray, “Robust safe control synthesis with disturbance observer-based control barrier functions,” in IEEE Conf. Decision and Control.   IEEE, 2022, pp. 5566–5573.
  27. A. Alan, T. G. Molnar, E. Das, A. D. Ames, and G. Orosz, “Disturbance observers for robust safety-critical control with control barrier functions,” arXiv preprint arXiv:2209.08123, 2022.
  28. Y. Wang and X. Xu, “Disturbance observer-based robust control barrier functions,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 3681–3687.
  29. Y. Cheng, P. Zhao, and N. Hovakimyan, “Safe model-free reinforcement learning using disturbance-observer-based control barrier functions,” arXiv preprint arXiv:2211.17250, 2022.
  30. Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC).   IEEE, 2016, pp. 322–328.
  31. W. Xiao and C. Belta, “Control barrier functions for systems with high relative degree,” in IEEE Conf. Decision Control, 2019, pp. 474–479.
  32. X. Tan, W. S. Cortez, and D. V. Dimarogonas, “High-order barrier functions: Robustness, safety, and performance-critical control,” IEEE Trans. Automatic Control, vol. 67, no. 6, pp. 3021–3028, 2021.
  33. W. Xiao and C. Belta, “High-order control barrier functions,” IEEE Trans. Automatic Control, vol. 67, no. 7, pp. 3655–3662, 2021.
  34. R. Takano and M. Yamakita, “Robust control barrier function for systems affected by a class of mismatched disturbances,” SICE J. Control, Meas., and Sys. Integ., vol. 13, no. 4, pp. 165–172, 2020.
  35. A. Stotsky and I. Kolmanovsky, “Application of input estimation techniques to charge estimation and control in automotive engines,” Control Engineering Practice, vol. 10, no. 12, pp. 1371–1383, 2002.
  36. H. Xie, L. Dai, Y. Lu, and Y. Xia, “Disturbance rejection MPC framework for input-affine nonlinear systems,” IEEE Transactions on Automatic Control, vol. 67, no. 12, pp. 6595–6610, 2021.
  37. R. Sinha, J. Harrison, S. M. Richards, and M. Pavone, “Adaptive robust model predictive control with matched and unmatched uncertainty,” in 2022 American Control Conference (ACC).   IEEE, 2022, pp. 906–913.
  38. A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-critical control with control barrier functions,” in Learning for Dynamics and Control.   PMLR, 2020, pp. 708–717.
  39. F. Castaneda, J. J. Choi, W. Jung, B. Zhang, C. J. Tomlin, and K. Sreenath, “Probabilistic safe online learning with control barrier functions,” arXiv preprint arXiv:2208.10733, 2022.
  40. Y. Yang, H. Xu, and X. Yao, “Disturbance rejection event-triggered robust model predictive control for tracking of constrained uncertain robotic manipulators,” IEEE Transactions on Cybernetics, 2023.
  41. Y. Yan, X.-F. Wang, B. J. Marshall, C. Liu, J. Yang, and W.-H. Chen, “Surviving disturbances: A predictive control framework with guaranteed safety,” Automatica, vol. 158, p. 111238, 2023.
  42. J. Du, X. Hu, M. Krstić, and Y. Sun, “Robust dynamic positioning of ships with disturbances under input saturation,” Automatica, vol. 73, pp. 207–214, 2016.
  43. J. Yang, S. Li, and W.-H. Chen, “Nonlinear disturbance observer-based control for multi-input multi-output nonlinear systems subject to mismatching condition,” International Journal of Control, vol. 85, no. 8, pp. 1071–1082, 2012.
  44. T. Posielek, K. Wulff, and J. Reger, “Analysis of sliding-mode control systems with relative degree altering perturbations,” Automatica, vol. 148, p. 110745, 2023.
  45. E. D. Sontag and Y. Wang, “On characterizations of the input-to-state stability property,” Systems & Control Letters, vol. 24, no. 5, pp. 351–359, 1995.
  46. A. Al Sawoor and M. Sadkane, “Lyapunov-based stability of delayed linear differential algebraic systems,” Applied Mathematics Letters, vol. 118, p. 107185, 2021.
  47. T. Zou, J. Angeles, and F. Hassani, “Dynamic modeling and trajectory tracking control of unmanned tracked vehicles,” Robotics and Autonomous Systems, vol. 110, pp. 102–111, 2018.
  48. M. Gianni, F. Ferri, M. Menna, and F. Pirri, “Adaptive robust three-dimensional trajectory tracking for actively articulated tracked vehicles,” Journal of Field Robotics, vol. 33, no. 7, pp. 901–930, 2016.
  49. D. Wang and C. B. Low, “Modeling and analysis of skidding and slipping in wheeled mobile robots: Control design perspective,” IEEE Transactions on Robotics, vol. 24, no. 3, pp. 676–687, 2008.
  50. M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone programming,” Linear algebra and its applications, vol. 284, no. 1-3, pp. 193–228, 1998.
  51. S. Dean, A. Taylor, R. Cosner, B. Recht, and A. Ames, “Guaranteeing safety of learned perception modules via measurement-robust control barrier functions,” in Conference on Robot Learning.   PMLR, 2021, pp. 654–670.
  52. K. Long, V. Dhiman, M. Leok, J. Cortés, and N. Atanasov, “Safe control synthesis with uncertain dynamics and constraints,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7295–7302, 2022.
  53. J. Buch, S.-C. Liao, and P. Seiler, “Robust control barrier functions with sector-bounded uncertainties,” IEEE Control Systems Letters, vol. 6, pp. 1994–1999, 2021.
  54. N. C. Janwani, E. Daş, T. Touma, S. X. Wei, T. G. Molnar, and J. W. Burdick, “A learning-based framework for safe human-robot collaboration with multiple backup control barrier functions,” arXiv preprint arXiv:2310.05865, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.