Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the Fréchet Distance Between Uncertain Curves in One Dimension (2105.09922v1)

Published 20 May 2021 in cs.CG

Abstract: We consider the problem of computing the Fr\'echet distance between two curves for which the exact locations of the vertices are unknown. Each vertex may be placed in a given uncertainty region for that vertex, and the objective is to place vertices so as to minimise the Fr\'echet distance. This problem was recently shown to be NP-hard in 2D, and it is unclear how to compute an optimal vertex placement at all. We present the first general algorithmic framework for this problem. We prove that it results in a polynomial-time algorithm for curves in 1D with intervals as uncertainty regions. In contrast, we show that the problem is NP-hard in 1D in the case that vertices are placed to maximise the Fr\'echet distance. We also study the weak Fr\'echet distance between uncertain curves. While finding the optimal placement of vertices seems more difficult than the regular Fr\'echet distance -- and indeed we can easily prove that the problem is NP-hard in 2D -- the optimal placement of vertices in 1D can be computed in polynomial time. Finally, we investigate the discrete weak Fr\'echet distance, for which, somewhat surprisingly, the problem is NP-hard already in 1D.

Citations (9)

Summary

We haven't generated a summary for this paper yet.