Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete Fréchet Distance Oracles (2404.04065v1)

Published 5 Apr 2024 in cs.CG

Abstract: It is unlikely that the discrete Fr\'echet distance between two curves of length $n$ can be computed in strictly subquadratic time. We thus consider the setting where one of the curves, $P$, is known in advance. In particular, we wish to construct data structures (distance oracles) of near-linear size that support efficient distance queries with respect to $P$ in sublinear time. Since there is evidence that this is impossible for query curves of length $\Theta(n\alpha)$, for any $\alpha > 0$, we focus on query curves of (small) constant length, for which we are able to devise distance oracles with the desired bounds. We extend our tools to handle subcurves of the given curve, and even arbitrary vertex-to-vertex subcurves of a given geometric tree. That is, we construct an oracle that can quickly compute the distance between a short polygonal path (the query) and a path in the preprocessed tree between two query-specified vertices. Moreover, we define a new family of geometric graphs, $t$-local graphs (which strictly contains the family of geometric spanners with constant stretch), for which a similar oracle exists: we can preprocess a graph $G$ in the family, so that, given a query segment and a pair $u,v$ of vertices in $G$, one can quickly compute the smallest discrete Fr\'echet distance between the segment and any $(u,v)$-path in $G$. The answer is exact, if $t=1$, and approximate if $t>1$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Intersection queries for flat semi-algebraic objects in three dimensions and related problems. In X. Goaoc and M. Kerber, editors, 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. See the full version at arXiv:2203.10241. URL: https://arxiv.org/abs/2203.10241.
  2. Computing the discrete Fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014. URL: https://doi.org/10.1137/130920526, doi:10.1137/130920526.
  3. P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discret. Comput. Geom., 11:393–418, 1994. URL: https://doi.org/10.1007/BF02574015, doi:10.1007/BF02574015.
  4. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl., 5:75–91, 1995. URL: https://doi.org/10.1142/S0218195995000064, doi:10.1142/S0218195995000064.
  5. Discrete Fréchet distance oracles. In Wolfgang Mulzer and Jeff M. Phillips, editors, 40th International Symposium on Computational Geometry, SoCG 2024, June 11–14, 2024, Athens, Greece, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.
  6. K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 661–670. IEEE Computer Society, 2014. URL: https://doi.org/10.1109/FOCS.2014.76, doi:10.1109/FOCS.2014.76.
  7. Discrete Fréchet distance under translation: Conditional hardness and an improved algorithm. ACM Trans. Algorithms, 17(3):25:1–25:42, 2021. URL: https://doi.org/10.1145/3460656, doi:10.1145/3460656.
  8. K. Bringmann and W. Mulzer. Approximability of the discrete Fréchet distance. J. Comput. Geom., 7(2):46–76, 2016. URL: https://doi.org/10.20382/jocg.v7i2a4, doi:10.20382/jocg.v7i2a4.
  9. SETH says: Weak Fréchet distance is faster, but only if it is continuous and in one dimension. In Timothy M. Chan, editor, Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2887–2901. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.179, doi:10.1137/1.9781611975482.179.
  10. Efficient Fréchet distance queries for segments. In 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 29:1–29:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.29, doi:10.4230/LIPIcs.ESA.2022.29.
  11. S.-W. Cheng and H. Huang. Solving Fréchet distance problems by algebraic geometric methods. CoRR, abs/2308.14569, 2023.
  12. Data structures for Fréchet queries in trajectory data. In J. Gudmundsson and M. H. M. Smid, editors, Proceedings of the 29th Canadian Conference on Computational Geometry, CCCG 2017, July 26-28, 2017, Carleton University, Ottawa, Ontario, Canada, pages 214–219, 2017.
  13. A. Driemel and S. Har-Peled. Jaywalking your dog: Computing the Fréchet distance with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013. URL: https://doi.org/10.1137/120865112, doi:10.1137/120865112.
  14. T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.
  15. T. Farhana and M. J. Katz. Spanners under the Hausdorff and Fréchet distances. CoRR, abs/2311.06013, 2023.
  16. A. Filtser and O. Filtser. Static and streaming data structures for Fréchet distance queries. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1150–1170. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.71, doi:10.1137/1.9781611976465.71.
  17. O. Filtser. Universal approximate simplification under the discrete Fréchet distance. Inf. Process. Lett., 132:22–27, 2018. URL: https://doi.org/10.1016/j.ipl.2017.10.002, doi:10.1016/j.ipl.2017.10.002.
  18. Map matching queries on realistic input graphs under the Fréchet distance. In N. Bansal and V. Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 1464–1492. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch53, doi:10.1137/1.9781611977554.ch53.
  19. J. Gudmundsson and M. H. M. Smid. Fast algorithms for approximate Fréchet matching queries in geometric trees. Comput. Geom., 48(6):479–494, 2015. URL: https://doi.org/10.1016/j.comgeo.2015.02.003, doi:10.1016/J.COMGEO.2015.02.003.
  20. Translation invariant Fréchet distance queries. Algorithmica, 83(11):3514–3533, 2021. URL: https://doi.org/10.1007/s00453-021-00865-0, doi:10.1007/s00453-021-00865-0.
  21. J. Matoušek. Randomized optimal algorithm for slope selection. Inf. Process. Lett., 39(4):183–187, 1991. URL: https://doi.org/10.1016/0020-0190(91)90177-J, doi:10.1016/0020-0190(91)90177-J.
  22. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362–391, 1983. URL: https://doi.org/10.1016/0022-0000(83)90006-5, doi:10.1016/0022-0000(83)90006-5.
  23. H. von Koch. Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Arkiv för matematik, astronomi och fysik, 1:681–704, 1904.
  24. T. Wylie and B. Zhu. Protein chain pair simplification under the discrete Fréchet distance. IEEE ACM Trans. Comput. Biol. Bioinform., 10(6):1372–1383, 2013. URL: https://doi.org/10.1109/TCBB.2013.17, doi:10.1109/TCBB.2013.17.

Summary

We haven't generated a summary for this paper yet.