Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Inhibition of Rayleigh--Taylor Instability by Horizontal Magnetic Field in an Inviscid MHD Fluid with Velocity Damping (2105.06472v1)

Published 13 May 2021 in math.AP

Abstract: It is still an open problem whether the inhibition phenomenon of Rayleigh--Taylor (RT) instability by horizontal magnetic field can be mathematically proved in a non-resistive magnetohydrodynamic (MHD) fluid in a two-dimensional (2D) horizontal slab domain, since it had been roughly verified by a 2D linearized motion equations in 2012 \cite{WYC}. In this paper, we find that this inhibition phenomenon can be rigorously verified in the inhomogeneous, incompressible, inviscid case with velocity damping. More precisely, there exists a critical number $m_{\rm{C}}$ such that if the strength $|m|$ of horizontal magnetic field is bigger than $m_{\rm{C}}$, then the small perturbation solution around the magnetic RT equilibrium state is exponentially stable in time. Our result is also the first mathematical one based on the nonlinear motion equations for the proof of inhibition of flow instabilities by a horizontal magnetic field in a horizontal slab domain. In addition, we also provide a nonlinear instability result for the case $|m|\in [0,m_{\rm{C}})$. Our instability result presents that horizontal magnetic field can not inhibit the RT instability, if it's strength is to small.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.