Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Characterizing the Functional Density Power Divergence Class (2105.06094v2)

Published 13 May 2021 in math.ST and stat.TH

Abstract: Divergence measures have a long association with statistical inference, machine learning and information theory. The density power divergence and related measures have produced many useful (and popular) statistical procedures, which provide a good balance between model efficiency on one hand and outlier stability or robustness on the other. The logarithmic density power divergence, a particular logarithmic transform of the density power divergence, has also been very successful in producing efficient and stable inference procedures; in addition it has also led to significant demonstrated applications in information theory. The success of the minimum divergence procedures based on the density power divergence and the logarithmic density power divergence (which also go by the names $\beta$-divergence and $\gamma$-divergence, respectively) make it imperative and meaningful to look for other, similar divergences which may be obtained as transforms of the density power divergence in the same spirit. With this motivation we search for such transforms of the density power divergence, referred to herein as the functional density power divergence class. The present article characterizes this functional density power divergence class, and thus identifies the available divergence measures within this construct that may be explored further for possible applications in statistical inference, machine learning and information theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.