Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why Does Multi-Epoch Training Help? (2105.06015v1)

Published 13 May 2021 in cs.LG

Abstract: Stochastic gradient descent (SGD) has become the most attractive optimization method in training large-scale deep neural networks due to its simplicity, low computational cost in each updating step, and good performance. Standard excess risk bounds show that SGD only needs to take one pass over the training data and more passes could not help to improve the performance. Empirically, it has been observed that SGD taking more than one pass over the training data (multi-pass SGD) has much better excess risk bound performance than the SGD only taking one pass over the training data (one-pass SGD). However, it is not very clear that how to explain this phenomenon in theory. In this paper, we provide some theoretical evidences for explaining why multiple passes over the training data can help improve performance under certain circumstance. Specifically, we consider smooth risk minimization problems whose objective function is non-convex least squared loss. Under Polyak-Lojasiewicz (PL) condition, we establish faster convergence rate of excess risk bound for multi-pass SGD than that for one-pass SGD.

Citations (1)

Summary

We haven't generated a summary for this paper yet.