Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On exponential convergence of SGD in non-convex over-parametrized learning (1811.02564v1)

Published 6 Nov 2018 in math.OC, cs.LG, and stat.ML

Abstract: Large over-parametrized models learned via stochastic gradient descent (SGD) methods have become a key element in modern machine learning. Although SGD methods are very effective in practice, most theoretical analyses of SGD suggest slower convergence than what is empirically observed. In our recent work [8] we analyzed how interpolation, common in modern over-parametrized learning, results in exponential convergence of SGD with constant step size for convex loss functions. In this note, we extend those results to a much broader non-convex function class satisfying the Polyak-Lojasiewicz (PL) condition. A number of important non-convex problems in machine learning, including some classes of neural networks, have been recently shown to satisfy the PL condition. We argue that the PL condition provides a relevant and attractive setting for many machine learning problems, particularly in the over-parametrized regime.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Raef Bassily (32 papers)
  2. Mikhail Belkin (76 papers)
  3. Siyuan Ma (39 papers)
Citations (96)